Naviator

Rutgers’ drone at home in water and the sky

Life
A prototype of Rutgers University's amphibious drone being tested in a pool. Image: Ritgers University

7 November 2016

Researchers at Rutgers University took have taken on the challenge of building an unmanned vehicle that can soar through the air and seamlessly transition to swim through the water. They call it the Naviator.

Amphibious aircraft aren’t a new concept. In fact, inventors have been playing with the idea since the 1930s, when Boris Ushakov, a student engineer at a Soviet military academy, proposed a three-engine floatplane that could flood its fuselage to sink beneath the water and torpedo its enemies when they got close. The project was scrapped before it was ever built.

Other attempts followed, including a flying submarine concept masterminded by Donald Reid in 1962. Like Ushakov’s aircraft, Reid’s vehicle was a floatplane built using parts from other planes. Reid’s flying submarine proved capable of diving approximately 3.5 metres (11′) but was unable to sustain long flights because of its enormous weight. The Naviator could be the drone that solves this problem.

The real challenge was building a craft that can function equally well in water and in the air and was able to transition repeatedly between the two, said Michael Benyo, who’s in the engineering department at Rutgers University.

“What we did was we decided we had two sets of propellers, the propellers above and the propellers below,” he said. “There is a sensor that detects when the drone is in the water. It shuts off the upper propeller, and the lower propeller pulls it into the water seamlessly and smoothly.”

Once the drone is underwater, both sets of propellers kick back in but at a much slower speed. This allows the Naviator to run for as long as 24 hours in the water, compared to one hour of flight time. The drone is operated using radio waves and a regular drone controller, though this method of navigation becomes problematic as soon as it hits the water.

“You really can’t communicate [with the drone] under water,” Benyo said. “Radio signals just die, within a few meters. So you really can’t use normal radio communications. The normal controls just won’t work.”

There are limited ways to communicate under water using ultrasound, “and we’re in the process of refining that,” he added. “But basically, you got to program it, set it free, and have it come back to you.”

So far, most of the funding for the Naviator has come from the US Navy, which hopes to use the technology for search-and-rescue operations, locating underwater mines, and conducting at-sea fleet inspections.

But the Naviator team also sees commercial applications, such as bridge inspections, data collection, and mapping. The team is currently working on a new design that will have a 7′ wingspan and be able to carry payloads more than 1.36kg. Benyo predicts the Naviator will hit the commercial market less than a year.

IDG News Service

Read More:


Back to Top ↑

TechCentral.ie