Material developed by Irish scientists could increase smartphone battery life By 300%

Prof Valeria Nicolosi, AMBER

MXenes to improve long-term performance of rechargeable batteries



Read More:

22 February 2019 | 0

Researchers from AMBER, the Science Foundation Ireland Research Centre for Advanced Materials and BioEngineering, have developed of a material which has the potential to improve battery lifetime of rechargeable batteries while also ensuring they can become smaller without loss of performance.

This ink-based nanomaterial, MXenes, will potentially enhance both the lifetime and energy storage capabilities in rechargeable batteries which users of electronic devices such as mobile phones, laptops and electric cars encounter every day. The new discovery could mean that the average phone battery life, roughly 10 hours of talk time, could increase to 30-40 hours. It could also have significant environmental impact, as the real time range of electric cars could increase to upwards of 500km (from an average range of 180-190km) meaning a car could drive from Cork to Letterkenny on a single charge.

Existing rechargeable Lithium-ion batteries rely on internal chemical reactions to store and emit energy. Making batteries smaller, so that they can fit into our phones or devices, means less space for these chemical reactions to take place. Similarly, making an electric vehicle drive further while keeping cars a reasonable size has led to the search for new technology to improve the amount of energy that can be stored, the rate at which the battery takes to emit energy, and ways of managing the physical deterioration inside the battery. One solution has been to increase the surface area inside the battery where the chemical reactions can take place.




Battery performance and durability depend on electrodes being electrically conductive and robust, able to withstand hundreds of charging cycles. Traditionally, the addition of conductive agents has ensured the charge transport throughout the electrode, while polymeric binders hold the electrode materials and the conductive agents together during charging cycles. Although these traditional electrode additives have been widely applied in Lithium-ion battery technologies, they fail to perform well in high-capacity Li-ion batteries. This is because the polymeric binders are not mechanically robust enough to withstand the stress induced during usage, leading to cracking and severely disrupting the conductivity within the electrode.

AMBER’s approach allows the battery to be both conductive and able to withstand hundreds of charging cycles, using these new class of 2D nanosheets. These novel materials not only are extremely good electrical conductors but are also remarkable in their mechanical properties, achieving unprecedented performance, surpassing anything reported so far.

Prof Valeria Nicolosi, AMBER lead Investigator on the project, and Professor of Nanomaterials & Advanced Microscopy at Trinity College Dublin (pictured), said: “Despite progress in batteries development there has been limited success in extending lifetime and improving their energy storage capabilities. A lot of it has to do with the need to look outside of box for solutions – specifically at new materials capable of surpassing the conventional technologies. A battery is made by two electrodes (anode and cathode) and a liquid electrolyte – this new research looks at improving the anode electrode and we are extremely excited by the potential of this new class of 2D nanomaterials.”

The new study is published in Nature Communications a leading international science journal. The study was led by AMBER researchers at the School of Chemistry, Trinity College, in partnership with the School of Physics at Trinity College Dublin and AJ Drexel Nanomaterials Institute and Dept of Materials Science and Engineering, Drexel University Philadelphia.

TechCentral Reporters

Read More:

Comments are closed.

Back to Top ↑